LOCAL IDENTIFIABILITY AND OBSERVABILITY OF NONLINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS
نویسندگان
چکیده
منابع مشابه
Local Identifiability and Observability of Nonlinear Differential-Algebraic Equations, Report no. LiTH-ISY-R-2711
Identifiability is important to guarantee convergence in system identification applications, and observability is important in applications such as control and diagnosis. In this paper, recent results on analysis of nonlinear differentialalgebraic equations are used to derive criteria for local identifiability and local weak observability for such models. The criteria are based on rank tests. E...
متن کاملObservability of Switched Differential-Algebraic Equations
We study observability of switched differentialalgebraic equations (DAEs) for arbitrary switching. We present a characterization of observability and, a related property called, determinability. These characterizations utilize the results for the single-switch case recently obtained by the authors. Furthermore, we study observability conditions when only the mode sequence of the switching signa...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Exact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملModel Reduction of Nonlinear Differential-algebraic Equations
∗ Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-581 83 Linköping, Sweden ∗∗ Department of Mechanical Science and Engineering, Nagoya University, Japan Abstract: In this work, a computational method to compute balanced realizations for nonlinear differential-algebraic equation systems is derived. The work is a generalization of an earlier work for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2006
ISSN: 1474-6670
DOI: 10.3182/20060329-3-au-2901.00126